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Abstract

Large scale data analysis has become one of the key problems

of modern world technological systems. Diverse systems exist to

overcome this problem, but still suffer systemic flaws.

This paper documents work on code generation for a elastic and

robust database management system called XDB which tries to tackle

these problems from a non-typical direction. The main focus of lies

on generation of plans for highly parallel and fast data processing

while being robust in execution. Therefore the structure of database

management systems is examined with regards to plan generation

and parallelization, required parts of an implementation for the XDB

system are conceived and implementation is documented.
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1 Motivation

1.1 Problem statement

The publication of Google’s ground breaking MapReduce paper revolu-
tionized large scale data processing [5]. Its open-source implementation
Hadoop has since become the de facto standard for analysing Big Data [13].
Despite its advantages like scalability to thousand of nodes and robustness
of the execution model, Hadoop is inherently inefficient1.

In contrast to other work, which focuses on providing solutions to the
shortcomings of Hadoop, the elastic, robust and flexible database manage-
ment system XDB tries to solve this by combining the major benefits of
traditional relational databases and Hadoop. As XDB is a middleware for
existing databases like MySQL or PostgreSQL, it benefits from the maturity
and efficiency in query processing of the underlying database systems
while exploiting the scalability and robustness of concurrent execution on
multiple nodes required for big data analytics.

All but its data persistency features had to be developed from ground
up with attention to its characteristics like distributed data storage and
execution and flexible programming model [3]. Part of such this system is
code generation to map functional frontend query input into individual jobs
for data execution while being able to match the robustness needed in an
highly distributed environment. This includes parallization to handle the
distributiveness of the data sources and provide speed-up where possible
to be competitive to other systems like Hadoop.

Thus, Code generation in XDB requires non-standard but efficient ap-
proaches for code generation and attention to the specific needs of a dis-
tributed database middleware which will be examined in this paper.

1See section 2.2 for explanation on this statement.
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1.2 Goals

Goal of this paper is to provide an overview of the work done during the
last view months on code generation and parallelization in the distributed
database system XDB. Insight into specific techniques will be given and the
resulting implementation will be presented and discussed.

2 Background

To understand the decisions made while developing code generation and
parallelization in XDB, knowledge about functioning of other well-known
database systems is required.

The following subsections will give an overview of standard techniques
used for code generation and parallelization in relational database manage-
ment systems and Hadoop. MapReduce and its implementation Hadoop
are explained. Finally the framework of XDB will be explained in detail
and code generation and parallelization will be located in this system.

2.1 Relational database management systems (RDBMS)

Relational database management systems make use of the relation database
model, presented in 1970 by Edgar Codd, to manage data. They are easy
to understand and to use and thus became the predominant choice for
electronically storing structured data.

Data is managed in relations (tables) which contain data sets. Each tuple
(row) of a table is a data record with the same kind of attributes (columns of
the table). The relational schema defines the number and types of attributes
of the table.

Queries against the relational database are expressed in a query lan-
guage based on a relational algebra. The most commonly used one is the
Structured Query Language (SQL). The original relational algebra by Codd
defined eight relational operators. [11]

These are:
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Union - Combines tuples of two relations and removes duplicates from
the result.

Intersect - Produces the set of tuples two relations have in common.

Difference - Produces the set of tuples two relations do not have in com-
mon.

Cartesian product - Results in a set of tuples which includes every tuple
of a relation combined with every tuple of another relation.

Selection - Retrieves all tuples from a relation which meet a specific crite-
ria.

Projection - Extracts only specific attributes from every tuple in a relation.

Join - Two relations are connected by a set of common attributes. Each
match from a relation to another is added to the result relation.

Relational division - Partitions a relation (divisor) using the tuples of
another relation (dividend) and is effectively the opposite of the
cartesian product.

Relational databases use many subsystems to handle user queries. Most
commonly the work flow can be described briefly as follows: Using a query
compiler the user query is parsed into a query plan which is then optimized.
The plan expresses a sequence of actions the RDBMS will perform to answer
the query. It is then passed to the execution engine which requests small
pieces of data, typically tuples of a relation, from a ressource manager that
knows about the data files holding the relations. It uses indices to find
elements more quickly. Then there is a buffer manager capable of supplying
the data from secondary storage.23

Because of the sequential processing of queries, possibilities to make
use of massive parallel systems for relational database systems are limited:

2In this context storage normally means hard disk.
3For a full overview of subsystems used to handle queries, see [11, pp. 10]
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Multiple queries can be trivially run in parallel, if they are independent.4

Limiting resource in such cases are disk I/O and processing power. [11, pp.
403]

Missing processing power can be addressed by using better algorithms
if available, or scale up by upgrading the database system’s hardware. Disk
I/O on the other hand can be speed up by using multiple disks (split or
mirror data), but this holds only true for throughput and not for response
time.5 In relational database systems indices can be used to lower response
time and increase throughput as they enable the system to address data
more efficiently and reduce the amount of data needed to be transferred
from secondary storage.

All mentioned methods are used to speed up the serial processing
of queries. To effectively use multi- and many-core systems relational
databases can make use of horizontal partitioning. This enables the database
system to even process single queries in parallel.

Horizontal partitioning involves spreading the table’s rows across sev-
eral logical tables by applying a certain partition criteria. The union of all
partitions provides a complete view of all rows. Commonly used partition
criteria are:

Range partitioning - Select the target partition for a particular row based
on the partitioning key being inside certain value ranges.

List partitioning - Partitions are assigned lists of fitting values. The par-
tition is chosen by matching the partitioning key with a partition’s
list.

Hash partitioning - A hash functions determines the partition.

As each partition is a logical independent table, queries on which are
limited on particular partitions are also independent. Thus, the initial
statement can be applies: Independent queries can be executed in parallel.

4Problems of transactional processing and query interaction will not be considered in
this paper.

5Both throughput and response time are important variables for examining the perfor-
mance of a system.
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This can even be used by the database system when processing queries on
the whole dataset: Queries with operations on partitioned relations can be
split up by specific rules and run in parallel on each partition. The result of
the whole operation is the union of all child operations on the partitions.

Despite such improvements, limitations of the database system as a
whole still apply. Because up-scaling of a single system is limited, other
mechanisms for scaling out have to be used:

• Scaling out via sharding involves partitioning databases into parts
(“shards”) and locating them on different database systems. Each
system is then responsible for managing access to shards located in it.
This improves performance as each database system can be placed on
different hardware, and thus the database can benefit of the accumu-
lated performance (read and write) of all machines. Furthermore it
allows further dynamic scale-up by creating or dismissing shards if
needed, however cost-intensive repartitioning is required. Its down-
sides are its inflexibility if no automatic system for distribution is
used and its difficulty to maintain integrity. Also, sharded databases
are often not fault-tolerant to loss/corruption of single shards.

• Another common method for scaling out is to replicate the data across
multiple servers. Each system contains the same data and queries are
split out across all systems. This can vastly improve read performance,
as the load is distributed but does not improve write access: To
maintain integrity data is replicated from one master node to multiple
slaves, which means there is still only one node for managing write
access. This method scales well for environments with a high number
of fast reads and low number of writes/updates, like web sites [9].
It is fault tolerant, maintains integrity and allows adding more slave
nodes as needed, which can increase the load on the master node
during replication. This method increases the throughput by raising
the number of active queries at a moment, but does not affect the
response time of each query as the procedure to answer the query is
still the same as on a single system database management system.
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There are proprietary solutions to provide scaling out in a relational
database system, like Microsoft’s SQL improvement SCOPE. It abstracts the
query from the technical difficulties present to make use of parallelization
[4] [14] [15].

2.2 Hadoop and Hive

The performance gains achieved by scaling relational database systems are
sometime not enough for data intensive and/or distributed applications,
thus special database systems have been developed to handle requirements.

In 2004, Google published a paper describing a novel parallel program-
ming model called MapReduce, specially suited for massively parallel
processing huge amounts of data. The MapReduce work flow splits data
processing into two main steps: map and reduce. The map procedure per-
forms filtering and sorting of input data whereas the reduce procedure per-
forms a summary operation on map’s results. The MapReduce framework
orchestrates this process by splitting input into sub-problems, distributing
the tasks across servers and managing communications and data transfers
between them. It also provides redundancy and thus fault tolerance of
the whole process by being able to restart certain steps of the operation if
workers fail.

Map operations can be distributed for processing and each processed
in parallel. In practice this is limited by the rate of which data sources
can be divided into smaller sub-problems. Reduce operations can be run
in parallel if all map results with the same key are presented to a single
reducer at the same time, or the reduce function is associative and thus can
be applied incremental. Because of the scalability of map and reduce, the
whole MapReduce system is able to massively scale out and provide huge
data throughput. In fact its ineffective for small data sets, but can be used
to process significantly larger datasets than common relational database
systems could. Many common real world operations can be expressed
using this model. [5]
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Soon after publication of Google’s paper developers wanted to use
the novel programming model in their own systems, thus a open-source
Java-based implementation named Apache Hadoop was born at Yahoo to
power their search. It is not only based on MapReduce but also on Google’s
paper about its scalable distributed file system called Google File System.
Hadoop’s correspondent implementation was named Hadoop Distributed
File System (HDFS).

Hadoop is a software framework to support data-intensive distributed
applications. It implements the MapReduce paradigm by splitting work-
load into small fragments which can be executed and re-executed on any
node in the cluster. Hadoop can make use of different file systems, but they
should be location aware: Hadoop uses information about the physical
location (connection to network switches) of nodes to store data on or near
computing nodes to provide very high aggregate bandwidth across the
cluster. HDFS uses this information in addition to keep copies of data on
different racks to reduce impact of local hardware failures and provide
fault-tolerance on file system level.

Figure 1: Hadoop architecture [8]
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Figure 1 shows the architecture of a multi-node Hadoop cluster. A
small cluster will include a single master and multiple worker nodes. The
master consists of a JobTracker, TaskTracker, NameNode and a DataNode.
A worker node acts as both a DataNode and TaskTracker, thought it is
possible to have data-only worker nodes and compute-only worker nodes.
Hadoop requires the Java Runtime Environment and Secure Shell to be set
up. Larger clusters use a dedicated machine as NameNode to manage the
HDFS file system index. Technically, a complete Hadoop cluster can be run
a single machine, but that would render the fault-tolerant features useless.

Because of the advantages over traditional parallel database systems
like its ability to scale to thousands of nodes, its robust execution model
and the support of the MapReduce paradigm Hadoop became the de facto
standard for analysing big data. Many high-level optimizable program-
ming languages supported MapReduce and could be used to compose
MapReduce programs. To simplify the switch of paradigms from relational
database models to the schema-less parallel MapReduce model extensions
features extensions like Apache Hive were developed.

Apache Hive is a data warehouse infrastructure built on to of Hadoop
to provide data summarization, query and analysis [12]. It supports large
datasets stored in Hadoop-compatible file systems and provides a SQL-like
language (HiveQL) while supporting MapReduce. To reduce the response
time of queries it provides indices.

While highly scalable, Hadoop is inherently inefficient [3]:

• First, Hadoop materializes each intermediate result of a map or a
reduce function either locally or into its distributed file system (HDFS).
This execution model results in a poor single query performance with
high resource consumption.

• Second, data locality is a huge problem since the storage layer is
separated from the computation layer: When data is loaded in HDFS
it is randomly partitioned often resulting in expensive operations,
which copy data over the network.
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• Third, efficient operations as well as index structures to read data
selectively from disk are missing. Hadoop only provides unary opera-
tors and needs to read all data from disk. Thus, the first map function
typically selects the relevant data by scanning all input data. More-
over, join operations are unnatural in Hadoop since binary operators
are not supported, leading to inefficient workarounds.

• Finally, Hadoop only allows a strict sequence of map and reduce
operations while intermediate results are re-partitioned after each
map-operation (even if it is not needed).

However, software to provide solutions to the shortcomings of Hadoop
has been developed (e.g. Hadoop++, HAIL, HadoopDB).

2.3 The XDB approach

The XDB database management system tries to combine the benefits of
relational databases and Hadoop. Its main goals are to provide elastic opti-
mization and execution, robust execution-plans and a flexible programming
model. While databases provide efficient techniques for query execution
that have matured over many decades, they lack scalability and robustness
properties that are provided by Hadoop for big data analytics. SQL makes
it difficult to express advanced analytical tasks or to use unstructured data,
whereas the flexibility of the MapReduce programming model is one of
Hadoop’s strengths.

XDB’s approach to achieve its goals tries not to fix the problems of
Hadoop: Its a middleware for existing relation database systems like
MySQL or PostgreSQL in order to benefit from the maturity of the un-
derlying database and its efficient query processing techniques such as
efficient relational operators and different types of indices. The databases
remain unchanged, XDB only works on top of them: XDB uses multiple
instances of the database systems to execute its queries.

To provide elastic optimization and execution XDB incrementally op-
timizes and executes its execution-plans. As small errors in cardinality
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estimations during optimization can have high impact on execution and
the available resources for a job are dependent on other users workloads,
incremental execution and re-optimization tries to adopt the plans for fast
execution during runtime.

Robust execution of queries is achieved by splitting the execution-plan
into independent sub-plans which materialize their result for recovery
after execution. In case of node failures sub-plan execution can easily be
reassigned to other nodes. A cost-based optimizer decides about when
to trade execution time for robustness and vice versa. This allows a fine-
grained and fault-tolerant execution in opposite of the all-or-nothing query
principle in relational database.

A flexible programming model is provided by extending SQL’s “one-
query one-result” principle with purely declarative functions with multiple
in- and outputs.6 Furthermore user defined functions with optimization
rules are introduced.

Figure 2 show the XDB architecture. As XDB is based on existing
database systems the lowest layer is the database layer. The layers above
form the middleware layer, which extends the mere databases by the men-
tioned properties: elasticity, robustness and flexibility.

The workflow of processing a query is as follows: The compile server
accepts a program written using the FunSQL programming model. It
then translates the program into a compile-plan, which is basically a data-
flow graph consisting of relational operators (resulting from declarative
functions). The compile-plan is then annotated with catalog metadata.
Before transferring the plan to the master tracker the plan is optimized by
applying a set of rule-base optimizations. The master tracker is responsible
to manage and monitor cluster resources and assign compile-plans to plan
tracker. The plan tracker is then responsible for executing and monitoring a
compile-plan. Therefore it divides the compile-plan into partial sub-plans.
Each of them is parallelized and executed individually. By materializing
their results robustness and adaptive parallelization are achieved: The
tracker decides about the degree of parallization once all inputs of a sub-

6It is a standalone functional language called FunSQL, see [2].
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Figure 2: XDB architecture [3]

plan are available. To execute a sub-plan it uses the code generator to create
execute plans with code suitable for the underlying database system and
deploys that to a compute server. Each compute server host an instance
of a underlying database on which they execute assigned plans and a sub-
plan tracker which tracks all plans executing on that node. The scheduler
tries to assign plans location aware, meaning it tries to execute plans on
compile server containing the data sources needed in the plan. Results
are then materialized to the underlying database (e.g., memory tables in
MySQL). This has the advantage that indexes and partition functions can be
leveraged for the intermediate results. To access data stored on other nodes
XDB uses the remote tables concept present in most relational database
systems, e.g. the federated engine in MySQL and dblink in PostgreSQL.
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This approach can be seen as a combination of concepts used in tradi-
tional relational database systems and Apache Hadoop: XDB exploits the
effectiveness of relational database systems in query processing by using
them as a solid basis for execution. It then tries to achieve the robustness
of Hadoop by using the “distributed data source and computation” and
the “store interim result” approaches. As queries are possibly executed on
multiple systems scalability is should also be provided.

Code generation is a key point to achieve this goals and keep up a
decent speed by providing parallelization.

3 Analysis and Concepts

Code generation works as a point of connection between the abstracted
XDB compile plans and the underlying database system. It’s not only re-
sponsible for transforming plans between them, but to include paralleliza-
tion and provide information for later elastic adoption during execution.
This information can be though of as a kind of “predetermined breaking
point” for splitting the plans when necessary.

To enable the system to execute plans (serial and parallel) and adopt
dynamically during execution the code generation layer has to execute
multiple steps: First, the compile plan created by the compiler has to be
annotated to allow the following tasks to use operator-specific information.
This includes decisions about splitting the plan into sub-plans. The next
step is to parallelize the compile-plan if needed. Next, the plan should be
optimized by the code generation system to allow faster execution on the
underlying database system.7 Then the actual code generation happens:
According to the annotated sub-plan information a query tracker plan with
tracker operators for each sub-plan is generated. The tracker operators con-
tain code suitable for the underlying database system (e.g. SQL for MySQL
databases). This includes not only the code used for execution but in- and
output DML statements and further data taken from the corresponding

7This is then the overall second optimization, targeting the execution speed of the later
generated code.
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compile plan operators. Using the scheduler the completed query tracker
plan is then executed and thus the operators are transferred to sub.plan
executors which will directly use the generated database code.

The subsequent subsections will describe some these code generations
aspects in detail and contain reasoning about decisions made while devel-
oping them.

3.1 Annotation

⋈l1.l_orderkey=l2.l_orderkey ∧  

 l1.l_partkey != l2.l_partkey 

⋈l1.l_partkey=p1.p_partkey 

part p1 

lineitem l1 lineitem l2 

⋈l1.l_partkey=p1.p_partkey 

part p2 

σl1.l_shipdate > date '1998-03-15’ ∧  

 l2.l_shipdate > date '1998-03-15' 

χl1.l_partkey, l2.l_partkey, p1.p_type, 

  p2.p_type, COUNT(*) as frequency 

σfrequency>=2 

Figure 3: Compile plan

At the beginning the code generator receives a compile plan like the one
in figure 3. It contains information about parent/child-relations between
the operators and some basic connection information for table operators
(that initial read data from the database system on execution). To further
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process the plan additional information for each operator is needed, thus
annotation is the first step in code generating.

To allow plan translation and elastic adoption the mentioned predeter-
mined breaking points have to be set. They specify if the interim result of a
operator should be persisted (“materialized”). A rule set can be created to
determine the state of this flag for each operator:

• The first obvious rule is to split on a absolute requirement to make
further code generation work. This is case for the last operator of a
plan. Its result apparently has to be materialized as it should be read-
able by the client as a result of the whole query, even after completion
of this operator.

• Furthermore a split is required for operators which have multiple
“parents”, meaning multiple operators whom input depends on this
operator. Such constructs are just not mapable on relational databases
with a single query. This operator else had to be run multiple times,
one time for each parent, which would result in a performance killer.
To prevent the results of such operators are materialized and each
parents reads its input from this materialization. This also supports
scalability as the parents even could be run on different nodes.

To allow the following systems to determine the result of this operation
the state of the materialize flag is annotated on each operator, specifying
where a plan can or has to be split into sub-plans.

The materialize flags effectively determines the borders of sub-plans: A
sub-plan of a compile plan consists of all operators below a operator with
the materialized flag set. The materialize-annotated version of the example
from above can be seen in figure 4.

The annotation step also persists information about partitioning and
connection association for operator deployment on execution. To keep
data traffic between XDB nodes low and speed high, the XDB scheduler
tries to execute queries near their data sources. To achieve this, it needs
information about where the data on which a operator depends is located.
Partitioning information is needed for parallelization.
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⋈l1.l_orderkey=l2.l_orderkey ∧  

 l1.l_partkey != l2.l_partkey 

⋈l1.l_partkey=p1.p_partkey 

part p1 

lineitem l1 lineitem l2 

⋈l1.l_partkey=p1.p_partkey 

part p2 

χl1.l_partkey, l2.l_partkey, p1.p_type,  

 p2.p_type, COUNT(*) as frequency 

σfrequency>=2 

σl1.l_shipdate >  

 date '1998-03-15’ 

σl1.l_shipdate >  

 date '1998-03-15’ 

Sub-Plan 1 

Sub-Plan 2 

Figure 4: Compile plan with sub-plans

At the beginning of code generation this information is only available
for table operators, as their data location is the location of the tables they
are referring to. The operators using them as data sources obviously inherit
their data location. To avoid expensive repartitioning, partition information
are also inherited. Edge cases are operators depending on multiple other
operators with different data locations or partitions: A decision about
the inheritance of has to be made. A simple move is to statically inherit
one of the childs, a better approach seems to be a cost-base decision (e.g.,
inherit the child with the most tuples) to keep computational cost and traffic
between nodes as low as possible.

The data source annotation is not set statically, but just a starting point
for the executor. Depending on the final deployment of operators on nodes
during runtime the decision about the best fitting node can and will change
if needed.

This annotations are optimized for a maximum of performance during
execution, but that’s is not always desired. Thus, the annotation step
includes the possibility to switch to a more robustness oriented annotation
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model. It may materialize more often to allow restarts of operators with
less overhead.

3.2 Parallelization

After annotation the compile plan contains all information needed to be
parallelized. This is a pure optional, but advised step. The idea behind
parallelization of compile plans lies in acceleration of execution.

Parallelization splits plans at specific points and copies the newly cre-
ated sub-plans (all operators following downwards). Without further ad-
justment this has no benefit, it only makes sense if parallelization of compu-
tations are possible at all. This is the case if using multiple partitions on the
data sources, which is a similar approach as used in horizontal partitions
by relational database systems presented in section 2.1: The parallelized
sub-plan can be run on each partition independently and thus in parallel.
The only requirement for parallelizing to work is that all data sources have
to have a common partition scheme8 applied to the same partition key. If
not the result is indefinite and likely wrong as operations on partition key
are likely not to match as expected. The results of the last operators of all
parallelized sub-plans have to be aggregated at last to create the full result.

The sub-plan is copied n times for n partitions present in the data
sources. Each parallelized sub-plan then executed only on one partition of
the data sources. This results in a substantial speed benefit during execution
as the execution time of operations can be split by nearly n for an optimal
case.9

To parallelize several steps have to be taken:

1. Partition candidates have to be found. Depending on the informa-
tion from annotator’s edge case decisions multiple possible partition
schemes for each operator could be realised: The annotator decided

8A common partition scheme means the same partition criteria with the same number
of partitions.

9Static overhead for execution additional sub-plans and aggregation of interim results
apply and thus lower the theoretical benefit of n.

19



locally by examining only the operator and its children. The par-
allelizer now appends all possible partition schemes to the parent
operator to later decide globally on what partition schemes should be
used.

2. Generate possible plans. Partition candidates of the plan have to be
combined to form complete plans with less as possible partition con-
versions needed between operators. This generates several possible
plans.

3. Chose plan. From all the possible plans generated one has to be cho-
sen as final. This decision is made by examine each plans cost based
on estimations about number of tuples and selectivity of operators.

4. Generate parallel plan. If found sub-plans below oprator with multi-
ple partitions are copied. Each sub-plan then execute it’s operations
only on one partition. At last a method have to be found to recombine
the results of the sub-plans to extract the result.

The result of this process is a parallelized plan, possible with sub-plans,
as seen in figure 5. Under the precondition that the tables l1, l2, p1 and p2
all have two partitions and are partitioned by the same criteria on the same
key two sub-plans with two executions each can be found. Both sub-plans
identified during the annotation step resulted in two parallel sub-plans
each.

3.3 Optimization

The first optimization run done by the compile server focusses solely on
an efficient compile plan including push down of operators. After paral-
lelization a very fast compile plan should have been created, that however
is very fragmented. This has a negative influence on the execution speed
because of a high static/dynamic cost ratio during execution: For every
small operator a new execution slot has to be allocated, the operator has to
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⋈l1.l_orderkey=l2.l_orderkey ∧  

 l1.l_partkey != l2.l_partkey 

lineitem l1(part1) lineitem l2(part1) 

σl1.l_shipdate >  

 date '1998-03-15’ 

σl1.l_shipdate >  

 date '1998-03-15’ 

Compute  
Server 1 

⋈l1.l_orderkey=l2.l_orderkey ∧  

 l1.l_partkey != l2.l_partkey 

lineitem l1(part2) lineitem l2(part2) 

σl1.l_shipdate >  

 date '1998-03-15’ 

σl1.l_shipdate >  

 date '1998-03-15’ 

Compute  
Server 2 

materialize t1 materialize t2 

⋈l1.l_partkey=p1.p_partkey 

part p1 (part1) 

⋈l1.l_partkey=p1.p_partkey 

part p2 (part1) 

χl1.l_partkey, l2.l_partkey, p1.p_type,  

 p2.p_type, COUNT(*) as frequency 

σfrequency>=2 

t1 

Compute  
Server 1 

⋈l1.l_partkey=p1.p_partkey 

part p1 (part2) 

⋈l1.l_partkey=p1.p_partkey 

part p2 (part2) 

χl1.l_partkey, l2.l_partkey, p1.p_type,  

 p2.p_type, COUNT(*) as frequency 

σfrequency>=2 

t2 

Compute  
Server 2 

Compute  
Server 1 

∪ 

materialize t3 materialize t4 

t3 t4 (remote) 

Figure 5: Parallelized compile plan [3]

be transferred, output tables (even if they mostly in memory) have to be
allocated and finally the query has to be executed.

This optimization run tries to lower this ratio by reducing the number of
operators needed to be executed based on combination of equal operators
by specific rules:

Multiple joins Join operators with direct parent-child relationship can
be easily combined by adding the join tokens and conditions to the
parent, redirect all children s of the child to the parent and delete the
child-join.
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Join after unary Unary operators and child joins can be combined by re-
placing the parent unary operator with the child join and adopt all
operations from the unary operator.

Multiple Unary Operators Multiple unary operators in a direct row of
control flow can be combined by accumulating all their operations
into one operator.

After applying this optimizations the processing of the compile plan is
completed.

3.4 Plan translation

The final step in code generation is to translate the compile into operations
suitable for the underlying database system. Based on the work of the
previous steps this is rather uncomplicated: For each extracted sub-plan a
corresponding operator is created, accumulating all its functionality. For
SQL based databases like MySQL and PostgreSQL this is the mere task to
stack the SQL representations of each compile plan operators into another,
leaving wildcards for variables like source and destination tables.

All the this generators are packed into a query tracker plan using the
same control flow as the sub-plans of the compile plan used. Now, the plan
is ready for deployment and execution.
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4 Implementation

This section described the implementation of the steps described in section
3.

4.1 Basic concepts

A basic concept implemented numerous times in XDB is the visitor pattern.
It separates the algorithm from the object structure on which it operates
and allows to add new operations without modifying the existing. A
visitor implements a algorithm using different functions, one for each
object is should be able to operate on. The processing is kicked off by
calling a object’s accept function with the desired visitors which then calls
the visitors visit function with itself as a reference. [7, pp. 525]

XDB uses the visitor pattern especially to walk through compile/query
tracker plans and operate on each instructions. There are implementations
available for each bottom up and top down visitors.

4.2 Annotation

The annotation step is completely handled by visitors: Each annotation
model (e.g. performance or robustness) has its own implementation. Deci-
sions about materializations are implemented as a simple boolean flag to
represent the current state. The presented rule set of deciding about it can
be condensed into three simple lines of code as seen in listing 1.

List of Listings 1: Materialize flag annotation

1 if (op.getParents().size() != 1) {

2 op.getResult().setMaterialized(true);

3 }

Partitioning and connection associations are just copied from the chil-
dren.
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4.3 Parallelization

The implementation of the parallelization step differs from the described
theory as the last step comes first: To combine the results of the parallel
executions a new operator is introduced named data exchange. The data
exchange operator is responsible to combine different results into one result
set and adjust partitioning as needed. Its representation on execution
corresponds to the SQL UNION ALL operator. Data exchanges are inserted
above every join and aggregation operator as they often a parents of a
sub-plan and contain partitioned data sources.

The next step is parallelize the plan as depicted in section 3.2:

1. To determine partition candidates each operator is examined using a
visitor. Possible partition candidates are no partition and any of the
partitioning of the children of this operator. They are added to a list
on the operator. As only operators directly reading from table have
partitioning information annotated at the beginning its partitions
transmigrate through the plan.

2. Possible plans are generated by aggregating a superset of all partition
candidates of all operators of the plan. For each of them a new copy of
the current plan is established and annotated with the partition infor-
mation of that candidate. This is done by visiting the plan bottom up
and inheriting the partition information of the child. Unneeded data
exchanges are removed and remaining are set to correctly combine
the partitions of the children.

3. Choosing the best plan is currently done by a simple heuristic based
on estimated costs for each plan: For each removed data exchange
during the plan generation phase the cost c of the plan is increased by
the following formula: 1/(10 ∗ number operators). This calculation is
done for every plan and the cheapest is chosen at the end.

4. To generate the parallel plan, the parallel sub-plans are deep-copied
and added to the plan. That means, that all object and object refer-
ences are duplicated.
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Apart from the planned parallelization steps partition information are
spread again at the end to ensure latest information for runtime.

4.4 Optimization

The three combination rules used in optimization are each implemented
using visitors.

4.5 Plan translation

Plan translation is done via toSqlString()-functions present in each oper-
ator with the use of placeholders. Each SQL representation of a operator
contains placeholders for the operator output table and possibly inner
(meaning children) operators and is a select from its data sources.

List of Listings 2: Data exchange SQL template

1 SELECT (<<OP0>>) UNION ALL (<<OP1>>)

For example the representational template of a data exchange operator
can be examined in listing 2. The placeholders <OP0> and <OP1> are replaced
with their specific children operator ids during runtime. The resulting
placeholders in the SQL statement are then replaced again when combining
the SQL statement of this operator with that of the children.

List of Listings 3: Equi join SQL template

1 SELECT <RESULT> FROM (<<OPX>>) AS <OPX> INNER JOIN (<<OPY>>) AS

<OPY> ON <JATTX> = <JATTY>

A more complex example is presented in listing 3, that shows the SQL
template of the equi join operator. It is more complex as its uses additional
projection attributes (<RESULT>), aliases children operators (AS <OP1>) re-
sults and uses join conditions (<JATTX> = <JATTY>).

This SQL statements are assigned to operators in the generated query
tracker plan. That plan is then handed off to deployment and execution.
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5 Evaluation

This sections presents the results of the first benchmarks of XDB. XDB was
tested on Java 1.6 with MySQL as underlying database system. This ran on
a cluster with eight virtualized nodes, each consisting of a Intel Xeon X5650
with 2.67 GHz clock, 8GB of RAM and a 80 GB hard disk as secondary
storage. The software stack was chosen as the following: Xen as a VM
monitor, CentOS 6, Cloudera CDH 4.5 Free Edition including Hive, MySQL
5.6.10 (using InnoDB as the default storage engine and read committed as
the default transaction isolation level) as well as Java 1.6.
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Figure 6: XDB vs. Hive (TPC-H SF=30) [3]

Tested were TPC-H queries Q3, Q4 and Q5 with a scaling factor SF = 30.
Figure 6 shows the comparison between XDB and Hive executing the TPC-
H benchmark on the same cluster. While Hive/Hadoop was installed and
run with default configuration, XDB’s table were partitioned: the lineitem
table was partitioned into 8 parts using a hash-based partitioning scheme
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on the attribute l_orderkey and all other tables were partitioned using a
reference based partitioning scheme such that all joins could be executed
locally on each node with the partitioned lineitem table. As a result, a
speed-up factor of approximately 6 to 10 in favour of XDB can be seen.

In order to show the flexibility of XDB, a basket analysis, which includes
a white-box user-defined function as described in section 2.3 has been
executed. For comparison, the basket analysis has been executed on Hive
using the same Java code for computing the string-similarity in the user-
defined function. The result of this experiment can be seen by the rightmost
bar group of figure 6. Compared to Hive, XDB shows a speed-up factor of
approximately 20 since XDB can optimize plans which include white-box
user-defined functions (i.e., push down selections and aggregations over
UDFs). [3]

6 Conclusion

6.1 Conclusion

XDB combines the advantages of the named systems: It offers the scalability,
robustness and flexible programming model in a distributed environment
like Hadoop does while using the stability and single query performance
offered by relational databases. Meanwhile, compared to Hadoop/Hive,
the performance could be increased by an amount that enables XDB systems
to handle even the requirements of distributed big data applications. This
paper showed that problems of other known systems could be solved and
an implementation is feasible.

6.2 Outlook

Some implementational problems still exist, though. The current cost
based analysis is only a very rough heuristic and should be replaced by a
approximation based on real information about amounts of data handled
by operators.
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Furthermore more optimization rules could be implemented. Current
borders for optimization rules are parallelized sub-plans, for which there
already are approaches to overcome this problem.
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